

NYISO Climate Change Phase II Study

Discussion of Draft Report Observations

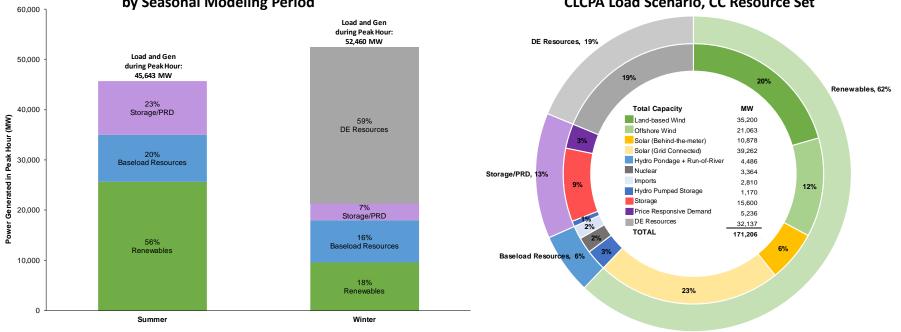
September 10, 2020

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS

Today:

- Overview of Draft Report Observations
 - Attributes of Generic Resource Required for Grid Reliability
 - Generic resource included in the resource sets called Dispatchable & Emissions-Free Resource, or "DE Resource"
 - Required Pace of Resource Development
 - Cross-Seasonal Differences in Load/Generation Balance
- Appendix: Updated Climate Case Results

Characteristics of Generic Resource Required for Grid Reliability


Attributes of Generic Resource Required for Grid Reliability

Characteristics of Generic Resource Required for Grid Reliability

Backstop Resource

AG ANALYSIS GROUP

- The "DE Resource" category is included in the model to achieve reliable solutions
 - AG does not presume to know what resource or what fuel will fill this gap twenty years hence
 - The purpose of modeling it is to understand the attributes of the resource need
- The DE Resources are included to maintain reliability during the highest load hours of each modeling period. DE Resources provide the majority of energy on the peak winter hour during the CLCPA load scenario (Hour 2 of January 12, 2040)
- As a result, DE Resources make up a substantial portion of nameplate capacity: 19% of nameplate capacity in the Climate Change Phase II (CCP2) resource set for the CLCPA load scenario

Resource Mix during Peak Hour by Seasonal Modeling Period Nameplate Capacity by Resource Type CLCPA Load Scenario, CC Resource Set

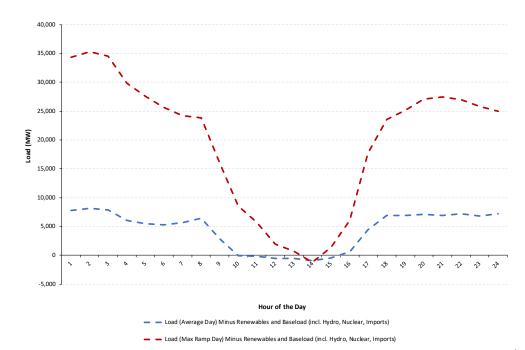
DE Resource Use by Seasonal Modeling Period

 Large quantity of DE Resource generation needed in a small number of hours

ANALYSIS GROUP

- DE Resource has low capacity factor (~12%) during the most stressed seasonal modeling period (winter)
- DE Resource has only a 3.7% capacity factor in the summer seasonal modeling period
- DE Resource is not needed at all during shoulder season modeling period
- Thus, while a substantial quantity of capacity is needed, the energy need is minimal

Duration Curve of DE Resource Generation by Modeling Period – CLCPA Load Scenario, Baseline Case

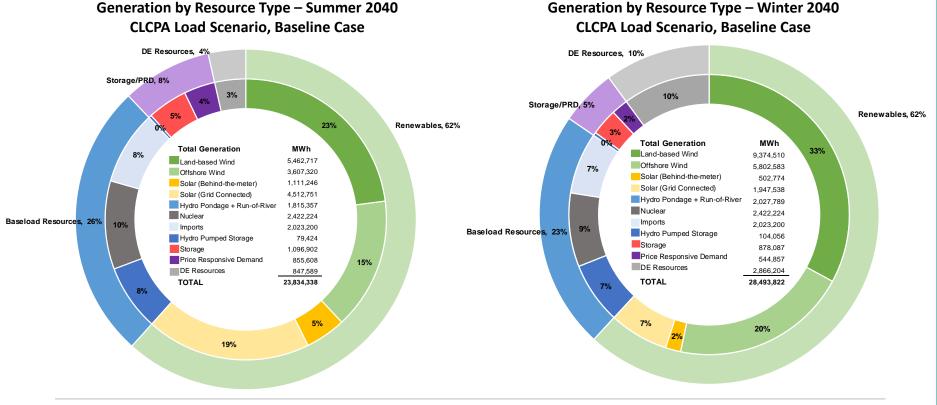


DE Resource Ramping Capability Attribute

 The DE Resource must be able to come on line quickly, and be flexible enough to meet rapid, steep ramping needs

ANALYSIS GROUP

- On an average day, storage can meet evening peaks, but the DE Resource must generate if storage is depleted and renewable generation is low
- In the Winter CLCPA scenario, the DE Resource output across the state must increase from 362 MW (1.1% of DE Resource nameplate capacity) to 27,434 MW (85.4% of nameplate capacity) in 6 hours of the most stressed day


Maximum Hourly Ramping Requirement Winter CLCPA Load Scenario, Baseline Case

Note:

[1] Renewable generation quantities offset from load do not include curtailed renewable generation.

Resource Mix by Seasonal Modeling Period

- Overall, the DE Resource provides a small proportion of system energy; only 4% of summer modeling period load and 10% of winter modeling period load are met by DE Resources in the CLCPA load scenario under the CCP2 resource set
- Majority of load is served by baseload and renewable resources in each modeling period

ANALYSIS GROUP

Pace of Resource Development

Pace of Resource Development

Pace of Resource Development Required

- Overall, the impact on reliability associated with how the resource mix evolves between now and 2040 overshadows the reliability risks associated with the modeled climate disruption events
- The current system is heavily dependent on existing fossil-fueled resources, and eliminating these resources from the mix will require a substantial level of investment in new and replacement infrastructure, and/or the emergence of a zero-carbon fuel source for thermal generating resources

Pace of Renewable Resource Development Required

 For either the Climate Change Phase II or Grid in Transition resource sets, the required pace of development of wind and grid-connected solar nameplate capacity is thousands of MW per year from 2020 through 2040

Required 2020-2040 Capacity

 There is no historical precedent for this pace of renewable generation development and integration
Required Rate of New Resource Development in the

	Nameplate (Wind (Land-	Capacity (MW)	Growth Rate (MW/yr) Wind (Land-		
	based and Offshore)	Grid-Connected Solar	based and Offshore)	Grid-Connected Solar	
Existing Resources (2020)	1,985	57			
Climate Phase II Reference Case Resource Set (2040)	39,962	34,354	1,899	1,715	
Climate Phase II CLCPA Scenario Resource Set (2040)	56,263	39,262	2,714	1,960	
Grid in Transition Reference Case Resource Set (2040)	23,522	30,043	1,077	1,499	
Grid in Transition CLCPA Scenario Resource Set (2040)	48,357	31,669	2,319	1,581	
Historical Cap	acity Growth Ra	nte (2012-2020, MW/yr)	71.4	3.1	

CC and GIT resource sets, 2020-2040

Source:

ANALYSIS GROUP

[1] 2012 NYISO Gold Book, 2020 NYISO Gold Book.

Cross-Seasonal Differences in Load/Generation Balance

Cross-Seasonal Differences in Load/Generation Balance

Cross-Seasonal Differences in Load/Generation Balance

- Cross-seasonal differences in load and renewable generation would provide opportunities for renewable fuel production, provided it will be technically and economically feasible to create, transport, and store the fuel or to develop other forms of long-term storage
- The CCP2 resource set is constructed to meet peak demand in the winter and summer seasons based primarily on production from renewable resources, so there is a substantial amount of renewable generation that is excess, or "spilled," in offpeak seasons and hours
- The energy/fuel production potential of the excess renewable generation is large relative to the energy needs of the backstop resources during the summer and winter

ANALYSIS GROUP

Opportunity for Use of Shoulder Month Excess Renewables

 In the average hour in the shoulder season modeling, ~76% of renewable generation is excess to load and storage demand in NY State in the model

ANALYSIS GROUP

- In the CLCPA load scenario, there are 2,866 GWh of generation from backstop resources in the winter month, and 23,204 GWh of excess renewable generation in the shoulder month
- This means a seasonal storage technology with a round trip efficiency on the order of 10%-20% would be able to meet backstop generation energy needs with excess off-season renewables

Excess Renewable Generation CLCPA Load Scenario, CCP2 resource set

Season	Aggregate Excess Renewable Generation (GWh)	Average Hourly Excess Renewable Generation (MW)	Average Hourly Percentage of Excess Renewable Generation (%)
Winter	4,401	6,112	13.66%
Summer	3,926	5,453	13.95%
Shoulder	23,204	32,227	75.80%

Seasonal Storage Opportunity CLCPA Load Scenario, CCP2 resource set

		Shoulder	Summer	Winter	
	Dates	4/1/2040 -4/30/2040	7/1/2040 -7/30/2040	1/1/2040-1/30/2040	
	Total DE Resource Energy Used (GWh)	0 GWh	848 GWh	2,866 GWh	
CLCPA Case	Total Renewable Energy Curtailed (GWh)	23,204 GWh	3,926 GWh	4,401 GWh	
CLUPA Case	Seasonal Storage Efficiency Needed to Meet DE Resource Energy Need with Shoulder Season Curtailed Energy	-	3.65%	12.35%	

Appendix: Updated Case Results

Appendix: Updated Case Results

CLCPA Load Scenario Results (CCP2 Resource Set)

	Loss of Load		DE Resource Generation					
	Total Hours with		Max Consecutive	Total Hours with	Aggregate DE		Max 1-hr. DE	
	LOLO in at least	Aggregate LOLO	Hours with DE	DE Resource	Resource Gen.	Max DE Resource	Resource Gen.	
	one Load Zone	(MWh)	Resource Gen.	Gen.	(MWh)	Gen. (MW)	Ramp (MW)	
CLCPA Summer Scenario - Climate	Impact Phase II Reso	ource Set						
Baseline Summer	0	0	36	145	847,589	22,081	9,170	
Heat Wave	0	0	36	147	964,668	22,081	8,642	
Wind Lull - Upstate	0	0	37	179	1,171,656	23,361	9,447	
Wind Lull - Off-Shore	0	0	40	196	1,116,165	23,170	9,170	
Wind Lull - State-Wide	0	0	40	235	1,697,161	24,440	11,605	
Hurricane/Coastal Wind Storm	26	20,168	171	322	1,892,046	22,081	8,642	
Severe Wind Storm – Upstate	8	1,620	87	283	2,002,682	22,081	8,642	
Severe Wind Storm – Offshore	0	0	36	167	1,079,462	22,163	10,015	
Drought	0	0	36	166	1,148,649	23,595	10,610	
	Loss of Load		DE Resource Generation					
	Total Hours with		Max Consecutive	Total Hours with	Aggregate DE		Max 1-hr. DE	
	LOLO in at least	Aggregate LOLO	Hours with DE	DE Resource	Resource Gen.	Max DE Resource	Resource Gen.	
	one Load Zone	(MWh)	Resource Gen.	Gen.	(MWh)	Gen. (MW)	Ramp (MW)	
CLCPA Winter Scenario - Climate I	mpact Phase II Resou	urce Set						
Baseline Winter	0	0	62	255	2,866,203	32,135	11,716	
Cold Wave	0	0	62	259	2,879,947	32,135	11,716	
Wind Lull - Upstate	5	2,373	62	259	3,076,530	32,135	12,707	
Wind Lull - Off-Shore	10	7,184	104	274	3,350,666	32,135	11,715	
Wind Lull - State-Wide	13	14,404	105	278	3,653,404	32,135	12,403	
Severe Wind Storm – Upstate	45	22,146	81	369	3,822,059	31,419	12,850	
Severe Wind Storm – Offshore	9	4,203	103	304	3,609,785	32,135	11,715	
Icing Event	2	88	62	273	2,909,437	32,135	11,716	

NYISO Climate Change Phase II Study | September 10, 2020

AG ANALYSIS GROUP

Reference Case Load Scenario Results (CCP2 Resource Set)

	Loss of Load		DE Resource Generation				
	Total Hours with		Max Consecutive	Total Hours with	Aggregate DE		Max 1-hr. DE
	LOLO in at least	Aggregate LOLO	Hours with DE	DE Resource	Resource Gen.	Max DE Resource	Resource Gen.
	one Load Zone	(MWh)	Resource Gen.	Gen.	(MWh)	Gen. (MW)	Ramp (MW)
Reference Summer Scenario - Clin	nate Impact Phase II	Resource Set					
Baseline Summer	0	0	36	183	972,444	17,059	6,520
Heat Wave	0	0	36	199	1,067,892	17,059	6,520
Wind Lull - Upstate	2	729	38	209	1,175,961	17,059	5,655
Wind Lull - Off-Shore	2	1,797	41	243	1,307,211	17,059	6,380
Wind Lull - State-Wide	4	3,149	42	283	1,697,728	17,059	10,929
Hurricane/Coastal Wind Storm	76	96,295	173	349	1,637,221	17,059	6,520
Severe Wind Storm – Upstate	18	4,470	106	330	1,975,003	17,059	6,520
Severe Wind Storm – Offshore	0	0	36	241	1,249,958	17,059	7,489
Drought	11	6,383	38	209	1,305,698	17,059	5,755
	Loss of Load		DE Resource Generation				
	Total Hours with		Max Consecutive	Total Hours with	Aggregate DE		Max 1-hr. DE
	LOLO in at least	Aggregate LOLO	Hours with DE	DE Resource	Resource Gen.	Max DE Resource	Resource Gen.
	one Load Zone	(MWh)	Resource Gen.	Gen.	(MWh)	Gen. (MW)	Ramp (MW)
Reference Winter Scenario - Clima	ate Impact Phase II R	esource Set					
Baseline Winter	0	0	4	6	9,316	3,762	2,479
Cold Wave	0	0	4	6	9,316	3,762	2,479
Wind Lull - Upstate	0	0	4	6	10,646	4,213	2,400
Wind Lull - Off-Shore	0	0	9	15	48,055	6,386	3,819
Wind Lull - State-Wide	0	0	13	32	90,238	8,219	4,127
Severe Wind Storm – Upstate	10	1,146	14	56	119,192	5,809	2,283
Severe Wind Storm – Offshore	0	0	8	20	31,311	4,677	3,809
Icing Event	3	157	6	14	9,886	3,762	2,479

NYISO Climate Change Phase II Study | September 10, 2020

AG ANALYSIS GROUP

CLCPA Load Scenario Results (Grid-in-Transition Resource Set)

	Loss of Load		DE Resource Generation					
	Total Hours with		Max Consecutive	Total Hours with	Aggregate DE		Max 1-hr. DE	
	LOLO in at least	Aggregate LOLO	Hours with DE	DE Resource	Resource Gen.	Max DE Resource	Resource Gen.	
	one Load Zone	(MWh)	Resource Gen.	Gen.	(MWh)	Gen. (MW)	Ramp (MW)	
CLCPA Summer Scenario - Grid in T	Transition Resource	Set						
Baseline Summer	0	0	98	512	4,181,951	27,075	6,382	
Heat Wave	0	0	98	523	4,404,209	27,075	6,382	
Wind Lull - Upstate	0	0	98	516	4,501,251	28,807	7,643	
Wind Lull - Off-Shore	0	0	226	543	4,983,818	28,360	6,450	
Wind Lull - State-Wide	0	0	226	543	5,322,997	30,794	7,172	
Hurricane/Coastal Wind Storm	25	20,488	240	559	4,832,633	27,075	6,380	
Severe Wind Storm – Upstate	24	18,963	172	549	4,998,149	27,075	6,382	
Severe Wind Storm – Offshore	0	0	171	556	5,126,163	27,460	6,380	
Drought	0	0	102	520	4,616,646	28,720	8,162	
	Loss of Load		DE Resource Generation					
	Total Hours with		Max Consecutive	Total Hours with	Aggregate DE		Max 1-hr. DE	
	LOLO in at least	Aggregate LOLO	Hours with DE	DE Resource	Resource Gen.	Max DE Resource	Resource Gen.	
	one Load Zone	(MWh)	Resource Gen.	Gen.	(MWh)	Gen. (MW)	Ramp (MW)	
CLCPA Winter Scenario - Grid in Tr	ansition Resource Se	et						
Baseline Winter	0	0	104	460	6,155,321	39,539	11,992	
Cold Wave	0	0	104	466	6,272,961	39,539	11,992	
Wind Lull - Upstate	8	7,090	110	469	6,309,711	39,539	12,408	
Wind Lull - Off-Shore	6	1,378	168	487	6,836,558	39,539	11,627	
Wind Lull - State-Wide	9	10,757	124	486	6,988,838	39,539	12,041	
Severe Wind Storm – Upstate	51	57,457	110	551	6,707,765	38,284	11,461	
Severe Wind Storm – Offshore	2	327	120	561	7,916,575	39,539	11,763	
Icing Event	24	11,242	104	480	6,145,568	39,539	11,992	

NYISO Climate Change Phase II Study | September 10, 2020

AG ANALYSIS GROUP

Next Steps

NYISO Climate Change Phase 2 Study – Final Report

- Final Report draft version posted along with the September 10th ESPWG meeting materials
- Requesting that all Stakeholder comments on the Final Report draft be sent via email to <u>Lbullock@nyiso.com</u>. Deadline for Stakeholder comments is **Thursday, September 17**th
- October: TPAS/ESPWG Stakeholder presentation of the Final Report by Analysis Group.
- Final Report posted to the NYISO public website

Contact

Paul Hibbard, Principal Paul.Hibbard@analysisgroup.com Charles Wu, Manager Charles.Wu@analysisgroup.com